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The numerical implementation and stability of first- and second- 
order absorbing boundary conditions for simulating free surface gravity 
waves are considered. The free surface waves are solved with a panel 
method. The stability of the boundary conditions is proved, assuming 
certain properties of the integral operator. Arguments are given that 
support these assumptions. The theoretical results are confirmed in the 
test cases and the boundary conditions give low reflections for plane 
WaVeS. 0 1992 Academvz Press, Inc. 

1. INTRODUCTION 

In this paper we will consider the numerical implementa- 
tion and stability of absorbing boundary conditions for 
simulating surface gravity waves according to linear theory 
with a potential flow model. These boundary conditions will 
be tested with a three-dimensional panel method. 

In [9] absorbing boundary conditions are proposed that 
can be used on artificial boundaries in simulating gravity 
waves. These boundary conditions can be used to truncate 
large domains, while transmitting outgoing waves. These 
boundary conditions provide a well-posed problem. 
However, in numerical computations their discrete counter- 
part may lead to instabilities. Hence the stable implementa- 
tion of these boundary conditions will be analyzed. Here 
these boundary conditions will be used in combination with 
a panel method. Furthermore, the quality of the boundary 
conditions for absorbing various waves will be tested. 

The mathematical formulation of the problem is given in 
Section 2. In that section we will also discuss the panel 
method. The stability of the boundary conditions is 
analyzed in Section 3, and we will carry out the numerical 
tests in the fourth section. 

2. NUMERICAL ALGORITHM 

2.1. Governing Equations 

In this section the solution procedure for the free surface 
problem is described. 

Assuming that the fluid motion is described by a velocity 
potential 4 (VC$ = v), the free surface problem considered in 
this paper has the form [9] 

v2q5=o in Q = {x = (x, y, z)’ 1 x, 

ye[W, -h<z<O}, (2.1) 

all ad -= -- 
at an on z=O, 

84 
at= -g.v on z=O, 

on z=-h, (2.4) 

(2.2) 

(2.3) 

where q is the wave elevation and n denotes the inward 
normal. The depth h is assumed to be constant. 

Solid or artificial vertical boundaries truncate the fluid 
domain in the horizontal directions. On solid fixed boun- 
daries the normal component of the velocity is zero. On 
artificial vertical boundaries, either a first-order absorbing 
boundary condition is imposed, 

( cos(z).-gc.~ f$=o > (I4 < 7@L (2.5) 

or a second-order absorbing boundary condition is used, 

(2.6) 

with 

a = cos(cc,) ~cos(cr,) + t, 

b = c . (cos(cc,) + cos(a,)), 

e=c’.($-k’). 

0021~9991/92 $3.00 
Copyright 0 1992 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 

146 



IMPLEMENTATION OF ABSORBING BOUNDARY CONDITIONS 147 

In these expressions c is the phase velocity, and cg stands for 
the group velocity (see [9]). Equations (2.5) and (2.6) com- 
pletely absorb waves with velocity c, at an angle of incidence 
8 = + CI (resp. 8 = f tli or 9 = + u2) (see Fig. l), while the 
reflection coefficient for waves from other directions is 
smaller than one (in general, Eq. (2.6) provides lower 
reflections than Eq. (2.5)). 

The use of (2.6) in the end points leads to an unstable 
system. Hence we will use the first-order equation (2.5) in 
the corner points, or special second-order conditions for 
better reflection properties (see [9]): 

( sin(a,).g--c.g 
>i 

cor(ol,).~-~.~ d=o 
> 

(s = St?), (2.7) 

and 

These boundary conditions absorb waves at an angle of 
incidence 0 = c1i or 8 = f a2 For waves from other direc- 
tions from the interior of the domain, some reflection will 
occur, but with a reflection coefficient smaller than one. 
Both choices lead to a well-posed problem. 

2.2. Numerical Algorithm 

The numerical method used in our computations to solve 
the above equations is basically a panel method to solve 
Laplace’s equation in combination with a Runge-Kutta 
method to integrate in time. 

The panel method is based on Green’s third identity, 
which is used to replace Laplace’s equation by an integral 
equation over the boundary S of the domain Q. Inserting 
G(x, t) = - 1/(4nr) for the fundamental solution with x on 
the boundary S provides an equation that involves only 
variables on S, making it possible to reduce the three- 
dimensional problem of solving Laplace’s equation on Sz, 

s=s b 
-s 

s=s e 

FIG. 1. Boundary with an approaching wave. 

to the two-dimensional problem of solving an integral 
equation on S: 

(~)-G(S.X)-((~).~(~.X)]~SC 5 
(2.9) 

(x on a smooth part of S). 
We assume that the total boundary consists of a finite 

number of C2-continuous sub-surfaces, each of which can 
be represented by x = x(u, Y), (u, u) E [0, 11 x [0, 1 J in the 
computational domain. A sub-surface is divided into 
quadrilateral panels, with one collocation point per panel in 
its center in the computational domain. This point is used as 
an expansion point for the several functions defined on that 
panel. 

Equation (2.9) is discretized by assuming quadratic 
variations of 4 and linear variations of @//an over each 
panel, and the panel surface was taken quadratic in u and u 
(linear source and quadratic dipole distribution; see [lo] 
for details). Thus we have reduced the integral to an expres- 
sion in terms of the values of 4 and a#/lan in the collocation 
points only. Implementing this with x in each collocation 
point results in N equations with 2N unknowns. 

In each of the collocation points one of the unknowns can 
be eliminated by enforcing the boundary condition in that 
collocation point. The remaining N unknowns can then be 
solved from the N equations. Thus we need either 4 or @//an 
given in all xi. On the bottom, &$/an is prescribed, and this 
can be used directly. 

On the free surface two first-order ordinary differential 
equations in time are given: 

These conditions need no discretization in space and can be 
imposed directly in each collocation point in the free 
surface. 

A discretization in time is needed. Starting from a known 
initial situation, the problem has to be solved in discrete 
time levels. Assuming that all variables are known in the 
collocation points at t = t,, a Runge-Kutta scheme can 
be used to obtain d(xj, t,+dt) and q(xj, to+ At). 
4(x,, to + At) can serve as a boundary condition at the new 
time level t, + At. The solution of (&j/an)(xj, to + At) from 
the integral equation then makes it possible to do a new 
time step. 

The absorbing boundary conditions (2.8) and (2.10) must 
be discretized in time and in space. Not all discretizations 
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lead to stable algorithms. Hence we will investigate the 
stability of the discrete model of this given (well-posed) 
initial boundary value problem (IBVP). 

3. STABILITY 

The basic tool for investigating the stability of a scheme 
is normal mode analysis. For pure initial value problems it 
is sufficient to consider modes which are purely oscillatory 
in space and to require that no such solutions may exist 
which grow in time. This is the Von Neumann condition for 
Cauchy stability. 

For initial boundary value problems the question of 
stability is more difficult to answer. For finite difference 
models of hyperbolic problems a criterion based on normal 
mode analysis has been derived, which is similar to the 
uniform Kreiss condition (UKC) in well-posedness theory, 
providing a necessary and sufficient condition for the 
scheme to be stable in the sense of Gustafsson, Kreiss, and 
Sundstrom (GKS-stability), see [6]. 

Following [6], we consider the one-dimensional tirst- 
order equation 

24,=au,+b, a<0 (3.1) 

on x, t > 0, with initial and boundary conditions 

44 0) = f(x), 40,t) = g(t). (3.2) 

A finite difference approximation u; of u is computed in the 
grid points (xi, t,), xj = j . Ax (j = 0, 1, . ..) and t, = n . At 
(n = 0, 1, . ..). with Ax and At constants. Let the finite 
difference scheme be a two-level scheme which can be 
written as 

V n+ l= T(v”), (3.3) 

thus expressing the values v” + ’ in terms of previously com- 
puted variables. Boundary conditions are applied in j = 0. 

It is assumed that the solution v” at any time level n is in 
I,, i.e., 

Ilv”ll;=Ax. f ~u;12<co, (3.4) 
j=O 

or that the solution is periodic. 
If we also define the norms 

Ilv,ll;=At. f lu;l* (3.5) 
n=O 

and 

j=O n=O 
(3.6) 

the GKS-stability is basically defined as follows (for a 
precise definition, see [6, Definition 3.31): 

DEFINITION 3.1 (GKS-stability ). The finite difference 
scheme (3.3) is stable if constants a, 3 0 and K. > 0 exist, 
such that for all c1> ~1~ the estimate 

2 

. I)e-at . lIepa’ 4:,, 

(3.7) 

holds. 

This definition uses norms which are essentially integrals 
over t, which is very inconvenient, but for this stability 
definition, a necessary and sufficient condition exists. For 
this we introduce first the normal mode condition. Consider 
eigensolutions of the form 

u,” = eiWAx . eiwnAr = Fj . G”, (3.8) 

with k, w E @. 
The Cauchy stability requires that the scheme admits no 

solutions (3.8) with IFI = 1 and IGI > 1 (Von Neumann con- 
dition). Furthermore, if the model would admit solutions 
(3.8) with IFI < 1 and IGI > 1, some initial error will grow 
unboundedly as well, spoiling the solution. Hence if these 
solutions are solutions of the interior scheme, the boundary 
condition should exclude them. This is the Godunov- 
Ryabenkii stability condition. 

Solutions (3.8) with JFI < 1 and IGI = 1 are called 
evanescent modes. The occurrence of these solutions is less 
of a problem than the above case with IGI > 1, since an 
instability originating at the boundary will decay exponen- 
tially in the x-direction. Yet it is desirable to exclude these 
solutions as well. 

Gustafsson, Kreiss, and Sundstrom show that for 
stability it is, furthermore, necessary to exclude modes (3.8) 
with IFI = IGI = 1 as a solution of the model, which are 
limiting cases of solutions with JFI < 1 and JGI > 1. Basically 
this last condition states that waves that radiate from the 
boundary into the interior due to a group velocity pointing 
into the interior, should not be admitted. 

We will summarize these requirements in the following 
condition, which we will name the normal mode condition: 

DEFINITION 3.2 (Normal mode condition, NMC). A 
scheme satisfies the normal mode condition if no solutions 
of the form (3.8) are admitted with, 

IFI = 1, IGI ’ 1 (Von Neumann), (3.9) 
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or tion (v,,, 4A = u,, = u(x,, y,, 0) has to be determined at 

IFI < 1, IGI > 1 (Godunov-Ryabenkii) (3.10) the discrete points (x,, y,, 0) = (mh, nh, 0) at the surface. 
Writing the discrete counterpart of (2.10) as 

or 

If-1 < 1, ICI = 1 (evanescent modes) (3.11) &=( -$ -;)u,,=Bu,,> (3.14) 

or with A the discrete approximation of ajan = -a/&, this 
equation can be Fourier transformed using the discrete 

IFI = 1, IGI = 1, which perturb to IFI < 1 for IGJ > 1. Fourier transform 
(3.12) 

Now the following theorem holds: 

THEOREM 3.1. A finite difference model of (3.1)( 3.2) is 
GKS-stable if and only if the scheme satisfies the NMC. 

Note that this condition may not be sufficient for other 
stability definitions. 

Now, consider again the free surface problem. A rigorous 
stability theory for discretizations of this kind of IBVPs has 
not been developed yet. But since (3.9) and (3.10) are 
necessary conditions for any practical stability concept and 
(3.11) and (3.12) are also required in many cases, the NMC 
is a useful condition for stability in any case. Therefore, we 
will check whether our discrete model satisfies the NMC, 
adapted to this problem. 

Because the classical fourth-order Runge-Kutta scheme, 
which we use for the time integration, has a stability region 
which contains the intersection of a (rather large) 
neighborhood of zero and the negative half-plane, it is suf- 
ficient to consider only the semi-discrete case, in which only 
space-like operators are replaced by their discrete counter- 
parts. When stability is obtained in the semi-discrete case, 
the fully discrete model is also stable if the time-step used is 
small enough. Thus we consider eigensolutions of the form 

4,~ = exp(i(k,m Ax + k,n Ay + k,Z AZ)) . epr 

=F;.F;;Ff.G’, (3.13) 

and investigate whether the discrete model admits solutions 
that violate the NMC. 

Our stability analysis will proceed along the following 
path. First we will investigate the Cauchy stability of the 
discretization of the initial value problem (2.10). Then we 
include a boundary at x = 0 in our considerations and 
investigate the stability of the discrete model (with 
absorbing boundary conditions) for the half-space 
problem by means of the NMC. We will finish the analysis 
by considering the corner problem. 

3.1. Stability of the Unbounded Free Surface 

Consider the initial value problem (2.10). Assuming that 
the equations are solved exactly in time, a numerical solu- 

f&x, k,) = Fdfmn) 

=h2 f, f f,n 
m=-00 n= -3c 

x exp( - ik,x, - ik, y,). 

The inverse transform is given by 

fmn = Fd ‘(f(k,, k,)) 

htr, k,) 

x exp( ik,x, + ik, y,) dk, dk,. 

System (3.14) gives the transformed system 

(3.15) 

(3.16) 

(3.17) 

For the eigenvalues B of fi we have 

, -- 
bj=Jg IA(k)/ .exp(i( LA(k) + 2jn)/2), 

j=O, 1, (3.18) 

in which L A denotes the argument of a(k), and hence the 
eigensolutions are 

u,,(t)i = vi. ew(i(k,x, + k, y,)) 
x exp(Re(/3,). t + i.Im(/?,) . t). (3.19) 

For stability we require that Re(flj) < 0 (j = 0, 1). From 
(3.18) we then see that this can only be achieved if a is real 
and negative. 

As mentioned before, A4 is the discrete approximation of 
a$/&, and is obtained from the integral equation (2.9). 
Denoting &+/an by $ for convenience, the integral equation 
for x = x,, is 

= K~J-‘($)(x,,) (3.20) 
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~(F?ln) = ~z~v-‘(4Km)~ (3.21) 

assuming that KZAV’~’ exists. 
Discretizing this equation gives the discrete approxima- 

tion 

$=A& (3.22) 

Fourier transformation gives 

$(k, kJ = &L kJ &km kJ. (3.23) 

The Fourier symbol a of A can easily be found from 

a = A(exp(ik,x + ik, y))(x,,)/exp(ik,x, + ik, y,), 

k,, k, real. (3.24) 

For the lowest order consistent approximation of the 
integral equation, 4 is a linear function and $ a constant 
function over each panel. With panel size h = Ax = Ay, the 
approximation can be written as 

4(x,,) = -& i=i!i, j=Ea y-,:: yh;; Il/(%) ; d( d14 

= -k ? f 13pq4m~p,n--ql 
p=--m q--m 

= AZNV($)(xmn). (3.25) 

where p = m - i and q = II - j is substituted. The coefficients 

bpq=bm-in-j 

J(-h - a2 + (Yn - $I2 

d5 d9 (3.26) 

are positive and symmetric in p and q: b,,, = be,, my = 

b-p.9 = b,, --y. The Fourier symbol of AZNV is 

RZNV= AZNV(exp(ik,x + ik, y))(x,,)/exp(ik,x, + ik, yn) 

= -& f f [b,,.exp(ik,x-,+ik, y-,)1 
p=-00 cj--00 

1 m =-- 
2n I[ 

b,,+ f b,,.2 .cos(k,qh) 
p= --co q=I 

x exp( - ik, ph) 1 

b,, + f b,, .2. cos(k,qh) 
q=l 

+ f b,, .2 cos(k,ph) 
p=l 

+ f f b,, ‘4 .cos(k,ph) .cos(k,qh) 1 (3.27) 
p=l y=l 

and 

A(k) = iZNV - l(k). (3.28) 

Since gZNV ~ ’ = i?j/an = - ,/m, the operator 
AZNV-’ = a must be an approximation of -k, and, for 
stability, it must be real. 

Now, Im(a) =0 follows directly from the expression 
(3.27), with is real. Re(a) ~0 can be seen from the 
following. The coefficients b,, are all positive and decrease 
as l/p and l/q for p + co and q + co, respectively. Since 

O3 cos(px) 

= P p=l 

-= -log(2.sin(;)), O<x<27c, (3.29) 

is positive, the series in (3.27) converge to a negative real 
value for all k,, k, # 0. 

Figure 2 shows -h . a(k) as a function of hk when 
k, = k,. Clearly the scheme gives a very good approxima- 
tion of k, meaning that there is very little numerical disper- 
sion (the scheme is not dissipative due to Re(/Ij) = 0). 

We have shown that a(k) is real and negative, so we have 

THEOREM 3.2. The semi-discrete approximation of the 
free surface problem without boundaries satisfies the 
Von Neumann stability condition. 

-hk 

4 

FIG. 2. The symbol -hA compared to hk as a function of hk on (0, z) 
fork,=k,. 
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We will therefore assume that the discrete model is 
Cauchy stable. 

3.2. Stability of the Half-Space Problem 

Now consider the half-infinite free surface domain x < 0 
by introducing a vertical boundary at x = 0. For stability we 
require that no solutions of the form (3.13) exist that violate 
the NMC. 

We will start with the conditions (3.9) and (3.10): assume 
that IF,1 < 1 and IGI > 1, i.e., solutions which are bounded 
in space and with Re(/I) > 0. Here we must admit solutions 
with Im(k,) =O, as for Cauchy stability, and with 
Im(k,) < 0, since these solutions are in 1,. Thus we have to 
consider the case Im(k,) < 0. For the same reason we must 
have Im(k,) d 0 (IF,1 d l), and we maintain Im(k,,) = 0. 

In order to prove these first two conditions for the 
discretizations used here, an assumption must be made 
concerning the approximation of the normal derivative. 
Insertion of the normal mode (3.13) in the integral 
equation again gives the symbol a(k) of the discrete 
operator A, which approximates the normal derivative 
a/an on the vertical boundaries. We make the 

PROPOSITION 3.1. The symbol 

A(k,, k,., kZ) = A(exp(ik,Yx + ik, y + ik,z))(x,,,) 

/exp(ik,x, + ik, y, + ik,z,), 

with Im(k,) < 0, Im(k,) = 0, and Im(k,) < 0, satisfies on the 
boundary at x=0 of Q= {xIx<O, yE[W, z<O} the condi- 
tion : 

Re(A(k,, k,, k,)) < 0. (3.30) 

Above we have seen that the proposition holds for the 
infinite plane z = 0 of the half-space {x I x E [w, y E R, z < 0} 
with Im(k,) = 0, since the symbol a is independent of k, 
in that case. The same conclusions can be made for the 
boundary x = 0 of the half-space {x 1 x < 0, y E [w, z E Iw} 
with Im(k,) = 0 and Im(k,) = 0. It cannot be proved easily 
for the boundaries of the quarter-space of Proposition 3.1 
with Im(k,) 6 0 and Im(k,) < 0. 

However, the proposition is supported by the fact that the 
eigenvalues of the part in the matrix -C;‘C, (where C, 
contains the source coefficients of the matrix determined for 
the panel method and Cd contains the dipole coefficients) 
corresponding to one boundary were found to have no 
positive real part for the test geometries described in the 
following section, or for any other geometry used so far. 
Hence (3.30) is assumed to be true for solutions on the half- 
plane. 

Now it is easy to show that Eq. (3.9) and (3.10) are 
satisfied. For this, assume that (3.13), with Im(k,)<O, 

Im(k,) = 0, and Im(k,) < 0, is a solution of the free surface 
equations, and Re(/?) > 0. Now the scheme is stable only if 
this solution does not satisfy the chosen boundary condition 
in x = 0. 

The first-order absorbing boundary condition (2.5) can 
be written as 

84 c a4 --- 
at-cos(a) ai lcll < 42. (3.31) 

Inserting (3.13) gives 

fl.&L+& 
cos(cr) 

with v=A. (3.32) 

No solution with Re(/?) > 0 can exist, since Re(v) <O 
according to (3.30). Hence this discretization is stable in 
the sense of Godunov-Ryabenkii (note that (3.30) also 
guarantees the internal Gauchy stability of the scheme on 
the artificial boundary). 

By using Y = a . (@/at) - b . (@S/an), the second-order 
absorbing boundary condition (2.6) can be written as 

a4 b ad 1 -=-.- 
at a an+;” 

ay -$=c2 

where s is the horizontal 
boundary (see Fig. 1). 

824 s-e.9, 

tangential coordinate to the 

Because in this paper only problems with a horizontal 
bottom will be considered, a regular panel distribution can 
be chosen on the vertical boundaries, so that the horizontal 
tangential derivatives are approximated by a finite dif- 
ference approximation on a molecule of three equidistant 
collocation points. 

Inserting (3.13) in (3.33) and assuming Re(a)= 
Re(v) < 0, again results in eigenvalues fl with Re(P) < 0, so 
that the discretization of (3.33) is stable. Again, the assump- 
tion Re(v) < 0 also guarantees the internal stability of the 
discretization on x = 0. Therefore we have 

THEOREM 3.3. Assuming (3.30) to hold, the numerical 
schemes for the free surface problem with boundary in x = 0 
and first- or second-order absorbing boundary conditions 
imposed thereon, are stable in the sense of Godunov- 
Ryabenkii; i.e., no solutions exist with IF,.] < 1 and IGI > 1. 

Now consider the case IF,1 < 1 and IGI = 1. Assuming 
that (3.13) is a solution of the free surface equations, 
it is inserted again in the boundary conditions. From 
(3.32) it is clear that no solutions exist with IF,1 < 1 and 
IGI = 1 (Re(/3) = 0) for the first-order absorbing boundary 
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condition. Also, for any perturbed /I with Re(j3) > 0, we 
have Re(v)>O, so that conditions (3.11) and (3.12) are 
satisfied. 

For the second-order absorbing boundary condition we 
have the transformed equation 

(3.34) 

with Re(v) d 0, and p stems from the central discretization 
of the second derivative a2d//as2: 

/*= -exp(ik,h)-2+exp(-ik,h) 
h* 

= 2 - 2 . cos(k,h) 
h2 ’ 

(3.35) 

Hence .D is real and p k 0. 
The eigenvalues pi of the matrix in Eq. (3.34) satisfy 

p’-($.v).~i+~~o. (3.36) 

Inserting a perturbed eigensolution /Ii = 6 + i& with 6 > 0 in 
(3.36) gives 

6*-E2+i.2.d.~-~.v.(d+i.~) 

+c*.p+e 
~ = 0, 

a 
(3.37) 

from which we derive that 

Re(v)=i.d.(6*+E’+*) 
a 

x (6*+&*)--1>0. (3.38) 

Thus no solutions exist with IF,1 < 1 and (GI = 1 that 
violate the conditions (3.11 t(3.12). We have shown 

THEOREM 3.4. The numerical schemes for the semi- 
discrete free surface problem, with a boundary in x = 0 
and the first - or second-order absorbing boundary condition 
imposed on that boundary, satisfy the NMC, if (3.30) is 
assumed. 

With these stability results for the half-infinite domain, 
we now turn to the corner problem; i.e., we will investigate 
the stability of the scheme if a corner is present. 

3.3. Stability of the Quarter-Space Problem 

In practical calculations the fluid domain 
in all horizontal directions by (artificial) 
introducing corners and vertical edges in 

is truncated 
boundaries, 

the domain. 
Consider, therefore, the domain Q = {x Ix 6 0, y ~0, 
z d 0}, with boundaries at x = 0 and y = 0, and suppose the 
boundary conditions imposed on these boundaries are 
B, = 0 and B, = 0, respectively. 

Again we consider solutions of the form (3.13) and 
require that no such solution can exist that violates the 
NMC. For the half-space problem, solutions were admitted 
with Im(k,) < 0, Im(k,) = 0, and Im(k,) < 0. Here solutions 
with Im(k,) GO, Im(k,) 6 0, and Im(k,) 6 0 must be 
investigated. Therefore, we need an extension of Proposi- 
tion 3.1, to be able to make further investigations: 

PROPOSITION 3.2, The symbol 

a(k,, k.,, kZ) = A(exp(ik,x + ik, y + ik=z))(x,,,) 

lexp(ik,x, + ik, y, + ik,z,), 

with Im(k,) < 0, Im(k,) 6 0, and Im(k,) < 0, satisfies on the 
boundaries at x=0 and at y=O of 52=(X1x60, y<O, 
z d 0) the condition: 

W&k,, k,, k,)) d 0. (3.39) 

This proposition is supported by the same arguments as 
Proposition 3.1. 

Consider the boundary at x = 0 (of course, the analysis is 
also applicable to y = 0). The collocation points on the 
boundary are x,,,,/ = (0, -(n - l/2) . h, -(I- l/2) . h), 
n = 1, 2, . . . ; I= 1, 2, .,. . 

In the internal points n = 2, 3, . . . . the same boundary 
condition is imposed as in the half-space case. In n = 1, 
however, this is not always possible. No special treatment is 
required for the first-order absorbing boundary condition, 
but in the second-order case a discretization of (2.7) is 
needed in n = 1. 

So we assume that a solution (3.13) satisfies the free 
surface equations, the boundary condition on y = 0, and 
the boundary condition on x = 0 in the interior points 
n = 2, 3, . . . . satisfying any of the four cases of the NMC, with 
IFI < 1 and IGl3 1. Then the scheme is stable if this solution 
is excluded by the boundary condition in the end point 
n= 1. 

First consider the cases (3.9t(3.10): IF,1 < 1, [FYI d 1, 
IF,1 d 1, and IGI > 1 (Re(/I) > 0). As in (3.32), the first-order 
absorbing boundary condition gives 

p.$=L.v.J, 
cos( ci) 

with v=a. (3.40) 
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No solutions can exist with Re(j?) > 0, since Re(v) 60 since Re(v) < 0 and Re(p) 3 0; hence, this stability criterion 
according to Eq. (3.39). is satisfied. 

The second-order absorbing boundary condition (2.7) in 
n = 1 is rewritten as a system with first time derivatives and 
no spatial derivatives of the variable 2, which “exists” only 
inn=l: 

THEOREM 3.5. Assuming (3.39) holds, the numerical 
schemes for the free surface problem with boundary in x = 0 
and y = 0, and the describedfirst- or second-order absorbing 
boundary conditions imposed thereon, are stable in the sense 
of Godunov-Ryabenkii; i.e., no solutions exist with 1 F.,( d 1, 
lFVl < 1, and IG\ > 1. a4 C ad c ad+z ---.-++.- ) 

at- sin(ai) as COS(C~,) an 
(3.41) 

az C2 824 
at=sin(cc,)~co~(a,)‘~~ 

The tangential derivative &b/as is approximated using a 
one-sided finite difference scheme, such that the approxima- 
tion of a&/as in n = 1 can be written as p .$, with Re(p) 2 0. 
In the computations a three-point second-order scheme was 
chosen, 

34 3.d,-4.h+d, 
as n=i= 2.h ’ 

(3.42) 

with di=d.y= -(i- 1p)h. 
Inserting the elementary solution (3.13) gives p : 

1 
p=-(3-4.exp(-ik,h)+exp(-2.ik,h)) 

2h 

=h ((exp(-ik,h))-2)2- 1). (3.43) 

From this equation it follows that (Im(k,) GO!): 

Re(p) =& ((exp(Im(k,)h).cos(Re(k,)h)-2)2 

- (exp(Im(k,)h). sin(Re(k,)h))2 - 1) 

=&(2.(exp(Im(k,)h)-cos(Re(k,.)h)-1)’ 

- (exp(Im(k,) h))’ + 1). (3.44) 

Clearly, Re(p) 2 0 for all k,. Re(p) = 0 only occurs 
when Re(k,) = Re(k,) = 0. Now inserting (3.13) into the 
absorbing boundary condition (3.41) in n = 1 gives 

C c 
-.p+- 
sin(a,) cos(a2) 

CL 
sin(a,) .cos(a,) ‘o ’ 

The eigenvalues /Ii of the matrix are (-c/sin(a,)) p and 
(c/cos(a,))-v. No solutions with Re(b) > 0 satisfy (3.45), 

(3.45) 

In a similar way as before, it is easily seen that no solu- 
tions with 1F.J 6 1, IF,“;yl < 1, and IGl = 1 can exist for either 
of the two boundary conditions. Hence we have, assuming 
that on y = 0 an appropriate boundary condition is chosen, 
as well: 

THEOREM 3.6. The numerical schemes for the semi- 
discrete free surface problem, with a boundary in x = 0 
and y = 0, and the first - or second-order absorbing boundary 
condition imposed on those boundaries, satisfy the NMC, 
tf (3.39) is assumed. 

Theorem 3.6 provides a strong (and necessary) argument 
for stability of the scheme, but as mentioned, it is not suf- 
ficient. Polynomial growth may still be possible, and also we 
have considered only homogeneous boundary conditions. 
Forcing terms in the boundary conditions to simulate 
incoming waves may destabilize the scheme. 

3.4. Conclusions 

We can conclude that the absorbing boundary conditions 
satisfy strong and necessary conditions for stability, under 
the assumption that Propositions 3.1 and 3.2 hold. 
Arguments have been given that support these propositions. 

4. NUMERICAL RESULTS 

In this section the conclusions about the stability 
of the proposed boundary conditions will be tested by 
implementing them in the panel method. For specific 
choices of the parameters their reflection properties will be 
checked. 

4.1. Test Geometries 

In order to test the boundary conditions, two different 
geometries are used. The boundary conditions have been 
developed for plane waves. Their behaviour can be tested by 
using a model of a rectangular wave tank. The tank has a 
length of 40 m, its width is 30 m, and its depth is 6 m (see 
Fig. 3). 

The second model is a less trivial model. It is used 
to simulate diffracting waves on a cylinder (see Fig. 4). 
The plane y = 0 and the bottom are planes of symmetry. 
The program used to solve the problem (see [ 83) has the 
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FIG. 3. Grid on the rectangular wave tank. 

possibility to include these symmetries, so that only a part 
of the problem has to be solved. 

Waves can be generated from a (vertical) boundary of a 
model by using a first-order absorbing boundary condition 
with a generating functionf: 

a4 c ---.74+f: at - cos(cl) an (4.1) 

Plane waves can be generated in the first model by 
imposing Eq. (4.1) on one or two vertical boundaries (the 
boundaries where the waves enter the model), while the wall 
condition or first- or second-order absorbing boundary 
conditions can be imposed on the other boundaries. 
Equation (4.1) can also be used to generate waves in the 
second model, from the boundary at x = 0. This condition 
is first-order absorbing, so that waves that are reflected by 
the pile can be absorbed. On the other artificial boundaries, 
absorbing boundary conditions can be imposed, so that the 
incoming and the diffracted waves are absorbed. 

In Fig. 5 a horizontal section of both models is given. In 
the first model the boundaries are numbered for future 
reference. 

Y 
FIG. 4. Model for simulating diffracting waves on a cylinder. 

FIG. 5. (a) Surface of the first test model. (b) Surface of the second test 
model. 

4.2. Results on the Rectangular Wave Tank 

In this subsection the stability and reflection properties of 
the absorbing boundary conditions will be tested for plane 
waves, using the rectangular wave tank. 

Waves propagating in different directions, say at an angle 
/I (0 </I < rc/2) with the x-axis, can be simulated by using 
the following harmonic solution of the free surface problem 
as the initial solution at t = 0: 

4(x, y, z, t) = A f coss;Ji(h;;. ;)h)) 

x cos(k(x . cos(/?) + y . sin(B)) - o. t), 

q(x, y, t) = -A sin(k(x .cos(p) + y . sin(b)) - w . t) 

(z = 0). (4.2) 

In this expression A stands for the amplitude of the wave, o 
is the angular frequency, and k is the wave number. In the 
tests these parameters will have the following values: 

amplitude of the incoming wave: A=lm 

angular frequency: o = 1 rad/s 

wave number: k = 0.145208 rad/m. 

The time steps are chosen small enough, so that no 
instabilities develop due to the Runge-Kutta time integra- 
tion method. 

The first-order conditions (Eq. (3.31) or (4.1)) are 
imposed on boundaries 1,2, and 4, such that they are exact 
for the waves to be simulated. On boundary 3 first- or 
second-order absorbing boundary conditions will be tested. 

In order to obtain confirmation on the stability of the 
various boundary conditions, four numerical exeriments are 
done, with an incoming wave at an angle of incidence 
8 = 7c/6 (see Fig. 1). Table I summarizes the conclusions 
from the previous section on the stability of the various 
choices of boundary conditions. The values of the 
parameters shown in this table are chosen such that the 
incident wave should be perfectly absorbed. Any error in the 
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TABLE I 

Theoretical Stability Results 

Test Boundary 
number condition Order 

Angles of best 
absorption Stable 

1 (3.31) 1st G(,? 
6 

Yes 

2 (3.33) 2nd 

End points: (3.31) 1st 

3 (3.33) 2nd 

End points: (3.41) 2nd 

ag a,=0 
6’ 

a,=? a,=0 
6’ 

Yes 

Yes 

4 (3.33) 2nd a,+,=0 No 

End points: (3.33) 2nd 

computations hence must be due to the discretizations or, 
worse, may be caused by unstable behaviour. 

In all cases the experiments confirm the theoretical results 
of Table I. 

The errors that occur in the first three cases are almost 
equal, because these are due to the discretizations, viz. the 
numerical dispersion of the scheme at the free surface, and 
are not caused by the boundary conditions. After 7.5 s 
(which is longer than one period) the absolute errors in v 
are like those in Fig. 6. After a longer time, the magnitude 
of the errors does not increase for these boundary condi- 
tions. 

Imposing the second-order condition (3.33) in all colloca- 
tion points of a boundary (test 4) yields an unstable system, 
as predicted by the theory. The instabilities develop in the 
begin and end points of the second-order boundary. This 

FIG. 6. The errors in the elevation on the free surface of the first three 
tests. 

ERROR 1 0.05 

FIG. 7. The errors in the elevation in the fourth test after 1.5 s. 

can be concluded most easily from the results after a short 
period. The absolute errors after 1.55 s for the fourth test are 
therefore shown in Fig. 7. The errors propagate over the 
boundaries, but they keep growing for t > 1.5 s. 

With respect to the reflection properties of the boundary 
conditions in the first three tests, no reflected wave can be 
distinguished in the numerical results, confirming that the 
waves should be completely absorbed. 

Next we will consider some cases in which, theoretically, 
reflections should occur. For these tests the same boundary 
conditions are used as in the previous test, but the incident 
wave is chosen to come from a different direction (0 = n/4). 

Results of the test cases in Table II are presented in 
Figs 8-10. These figures show the resulting errors on the 
free surface after 3 s. Also figures are added that give 
the development of the errors in time in the point 
(x, y, z) = (39, - 3,0), which lies on the free surface, close 
to the corner. 

TABLE II 

Theoretical Reflection Coefficients 

Test 
number 

Boundary 
condition Order 

Angles of best 
absorption 

Reflection 
coeflicients 

6 (3.33) 2nd a,=? a>=0 
6’ 

-0.017 

End points: (3.31) 1st -0.101 

7 (3.33) 2nd cc,=? a,=0 
6’ 

-0.017 

End points: (3.41) 2nd 

581 99 I-I I 
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a O.lC 

k 
L 
fi 

ko.oe 
-lJ 
a, 

I 

-o.oa 

b 

-0.05 

-0.y 
1.00 2.00 

-time (sec.1 

FIG. 8. (a) Eta error in time. Time development of the error in test 5, (x, y, z) = (39, -3,0). (b) E rrors on the. free surface in test 5 after 3 s due to 
reflections. 

Figures 8-10 clearly show that the errors in these tests are with first-order conditions in the beginning and ending 
dominated by the reflected wave, but they are not larger collocation points provides high reflections in the corners, 
than theoretically expected. The reflections that appear as expected. 
have an amplitude which is of the same magnitude as the 
reflection coefficient (notice that the incoming wave has an 
amplitude A = 1). It is also clear that the reflections are 

4.3. Results on D$fracted Waves 

reduced by using higher order absorbing boundary condi- In this subsection, we will test how these conditions 
tions, even though the angles ~1~ and u2 are not directed absorb waves which are diffracted by a circular pile. The 
toward the incoming wave. Using second-order conditions incoming waves are the same as those used in the previous 

a 0.10 
L 
El 

hi 

ko.05 
4-J 
aJ 

I 

-0.00 

-0.05 

-0. 9.9 1.00 2.00 
-time (sec.1 

b 

FIG. 9. (a) Eta error in time. Time development of the error in test 6, (x, y, z) = (39, - 3,0). (b) Errors on the free surface in test 6 after 3 s due to 
reflections. 
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a 0.10 

k 
L 
L 
OJ 

ho.05 
-lJ 
OJ 

-0.05 

4 
-O.iB.oo 1.00 2.00 3.00 

-time (sec. ) 

b I ERROR 

0.05 

FIG. 10. (a) Eta error in time. Time development of the error in test 7, (x, y, z) = (39, -3,0). (b) Errors on the free surface in test 7 after 3 s due 
to reduced reflections. 

section, with 8 = 0. These waves can be generated by using 
Eq. (4.1) on the boundary at x = 0, with c( in every point 
such that reflected waves from the pile are absorbed (direc- 
tion of best absorption directed towards (x, y) = (6, -3)). 

In the first test, first-order absorbing boundary condition 
are imposed on the boundaries where the waves must leave 
the domain. The angle of best absorption is directed 
towards the incoming wave. In the second test, second- 
order absorbing boundary conditions are imposed on those 
boundaries (Eqs. (3.33) and (3.41)). The angles of best 
absorption ai and a2 are chosen to absorb the incoming 
wave and the reflected wave: c(i is chosen to be exact for 
plane waves from (x, y) = (8, -4) (on the pile), and ct2 is 

directed towards the incoming wave. On the pile, the wall 
condition (Q/&r = 0) is imposed. 

The analytical solution, used for obtaining the initial 
values and to check the numerical results, can be found in, 
for instance, Sarpkaya and Isaacson [ 111. The errors in the 
wave elevation after 2.5 s are given in Fig. 11. 

In Fig. 1 la it can be seen that the calculations with a first- 
order absorbing boundary condition provide large errors, 
especially behind the pile. The second-order boundary 
conditions provide smaller reflections, but still of the same 
order, although the boundary conditions are such that they 
should absorb the incoming waves and the diffracted waves 
well. The small reduction of reflections by using higher 

FIG. 11. (a) Errors on the free surface with first-order absorbing boundary conditions. (b) Errors on the free surface with second-order absorbing 
boundary conditions. 
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order absorbing boundary conditions is due to the fact that 
the diffracted waves are not plane waves. Modifications of 
the boundary conditions to reduce these errors have not 
been implemented. 
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5. CONCLUSIONS 

We found that the first- and second-order absorbing 
boundary conditions, imposed on the vertical boundaries of 
the models yield a stable system. Special (first- or second- 
order) conditions must be used in the outmost collocation 
points for the second-order absorbing boundary condition. 
The stability was proved with the help of two propositions. 
Although arguments have been given that support these 
propositions, they still remain to be proved. 
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